Наши задачи: изучить принципы работы лазера.
Содержание
Когда-то мир жил без лазеров. Это сейчас достижения квантовой физики, лазерной электроники, компьютерные технологии являются неотъемлемыми составляющими нашей жизни, применяются даже в быту. А у истоков глобальных перемен стояли выдающиеся физики XX века Николай Геннадьевич Басов, Александр Михайлович Прохоров и американец Чарлз Хард Таунс.
В 1964 году все трое получили Нобелевскую премию "за фундаментальные работы в области квантовой электроники, которые привели к созданию осцилляторов и усилителей, основанных на принципе лазера-мазера".
The prize was divided, one half being awarded to: CHARLES TOWNES the other half jointly to: NICOLAY BASOV and ALEKSANDR PROKHOROV for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser-laser principle..
Попробуем разобраться в принципах работы лазера. Рассмотрим схему энергетических уровней некоторого атома (рис.1).
Мы знаем, что, если атому, находящемуся на основном уровне W1, сообщить энергию, то он может перейти на один из возбужденных уровней (рис.2а). Наоборот, возбужденный атом может самопроизвольно (спонтанно) перейти на один из нижележащих уровней, излучив при этом определенную порцию энергии в виде кванта света (рис.2б). Если излучение света происходит при переходе атома с уровня энергии Wm на уровень энергии Wn, то частота излучаемого (или поглощаемого) света νmn = (Wm - Wn)/h.
Именно такие спонтанные процессы излучения происходят в нагретых телах и светящихся газах. Нагревание или электрический разряд переводят часть атомов в возбужденное состояние; переходя в нижние состояния, они излучают свет. В процессе спонтанных переходов атомы излучают свет независимо один от другого. Кванты света хаотически испускаются атомами в виде волновых цугов. Цуги не согласованы друг с другом во времени, т.е. имеют различную фазу. Поэтому спонтанное излучение некогерентно.
Наряду со спонтанным излучением возбужденного атома существует вынужденное (или индуцированное) излучение: возбужденные атомы излучают под действием внешнего быстропеременного электромагнитного поля, например света. При этом оказывается, что под действием внешней электромагнитной волны атом излучает вторичную волну, у которой частота, поляризация, направление распространения и фаза полностью совпадают с параметрами внешней волны, действующей на атом. Происходит как бы копирование внешней волны (рис.2в). Понятие об индуцированном излучении было введено в физику А.Эйнштейном в 1916 г. Явление вынужденного излучения дает возможность управлять излучением атомов с помощью электромагнитных волн и таким путем генерировать и усиливать когерентный свет.
Чтобы осуществить это практически, нужно удовлетворить трем условиям.
Резонансное поглощение препятствует возникновению генерации света.
Будет ли система атомов генерировать свет или нет, зависит от того, каких атомов в веществе больше. Для возникновения генерации необходимо, чтобы число атомов на верхнем уровне Nm было больше числа атомов на нижнем уровне Nn, между которыми происходит переход.
Конечно, можно использовать лишь ту пару уровней, между которыми возможен переход, т.к. не все переходы между любыми двумя уровнями разрешены природой.
В естественных условиях на более высоком уровне при любой температуре меньше частиц, чем на более низком. Поэтому в любом теле, сколь угодно сильно нагретом, поглощение света будет преобладать над излучением при вынужденных переходах.
Для возбуждения генерации когерентного света необходимо принять специальные меры, чтобы из двух выбранных уровней верхний был заселен больше, чем нижний. Состояние вещества, в котором число атомов на одном из уровней с более высокой энергией больше числа атомов на уровне с меньшей энергией, называется активным или состоянием с инверсией (обращением) населенностей.
Таким образом, для возбуждения генерации когерентного света необходима инверсия населенностей для той пары уровней, переход между которыми соответствует частоте генерации.
При этом, как и в любом резонаторе, условие резонанса выполняется только у тех волн, для которых на двойном оптическом пути внутри резонатора укладывается целое число длин волн. Наиболее благоприятные условия складываются для волн, распространяющихся вдоль оси резонатора, что и обеспечивает чрезвычайно высокую направленность излучения лазера.
Выполнение описанных условий еще недостаточно для генерации лазера. Для того, чтобы возникла генерация света, усиление в активном веществе должно быть достаточно большим. Оно должно превышать некоторое значение, называемое пороговым. Действительно, пусть часть светового потока, падающего на выходное зеркало, отразилась назад. Усиление на двойном расстоянии между зеркалами (один проход) должно быть таким, чтобы на выходное зеркало вернулась световая энергия, не меньшая, чем в предыдущий раз. Только тогда световая волна начнет нарастать от прохода к проходу. Если же этого нет, то в течение второго прохода выходного зеркала достигнет меньшая энергия, чем в предыдущий момент, в течение третьего –; еще меньшая и т.д. Процесс ослабления будет продолжаться до тех пор, пока световой поток не затухнет полностью. Ясно, что чем меньше коэффициент отражения выходного зеркала, тем большим пороговым усилением должно обладать рабочее вещество. Таким образом, в списке источников потерь зеркала стоят на первом месте.
Другим источником потерь являются торцы трубки с активной средой. Для уменьшения потерь на границе этой трубки выходные окошки делают скошенными под углом Брюстера (рис. 4). Линейно поляризованный свет с электрическим вектором, лежащим в плоскости падения, не испытывает потерь на отражение, вследствие этого лазер генерирует линейно поляризованный свет.
При выполнении этих трех условий мы получим систему, способную генерировать когерентный свет, и называемую лазером. Слово "лазер" составлено из первых букв английской фразы:"Light amplification by stimulated emission of radiation", что означает "усиление света с помощью вынужденного излучения".
Генерация когерентного света происходит одинаково во всех лазерах, как газовых, так и твердотельных. Особенности газового лазера и отличие отдельных видов газовых лазеров друг от друга связаны с выбором рабочего газа и способом создания инверсии населенностей.
Энергетический спектр газа отличается от спектра твердого тела прежде всего тем, что он весьма точно соответствует разностям энергетических уровней отдельных атомов и молекул. Это свойство газов позволяет предсказать множество возможных схем энергетических переходов в различных газах.
Другая особенность газов –; их высокая оптическая однородность. Плотность газа мала, поэтому свет в газе практически не рассеивается, и световой луч не искажается. Это позволяет использовать в газовых лазерах большие расстояния между зеркалами. Поэтому с помощью газового лазера легко получить высокую направленность и монохроматичность излучения.
Наряду с достоинствами газ как рабочая среда для лазера обладает и недостатком: плотность газа значительно ниже плотности твердых тел, и поэтому в единице объема газа нельзя получить такое большое количество возбужденных атомов, излучающих свет, как в твердом теле. В результате этого даже большие размеры газовых лазеров пока не дают возможности получить те высокие импульсные мощности, которые дают лазеры на твердом теле.
Одна из особенностей газов состоит в многообразии различных физических процессов, приводящих к образованию инверсии населенностей. Такими процессами являются неупругие соударения атомов разного "сорта", диссоциации молекул при соударении их в электрическом разряде, возбуждение атомов электронным ударом, светом и т.д.
Чаще всего инверсия населенностей создается в процессе электрического разряда. Эти лазеры называются газоразрядными.
В них инверсия населенностей уровней создается за счет возбуждения атомов или молекул газа при их соударении со свободными быстрыми электронами, образующимися в электрическом разряде.
Давление в газоразрядных лазерах выбирается в пределах от сотых долей до нескольких мм рт.ст. При меньших давлениях электроны, ускоренные электрическим полем, очень редко сталкиваются с атомами. При этом ионизация и возбуждение атомов происходят недостаточно интенсивно.
При больших давлениях эти столкновения становятся, наоборот, слишком частыми. Из-за этого электроны не успевают достаточно ускориться в электрическом поле и приобрести энергию, необходимую для ионизации и возбуждения атомов, т.е. столкновения становятся мало эффективными.
Различают три типа газоразрядных лазеров: лазеры на нейтральных атомах, ионные лазеры и молекулярные лазеры. Они отличаются друг от друга как механизмом образования инверсии населенностей, так и диапазонами генерируемых волн λ. Различие в диапазонах обусловлено различиями в энергетическом спектре нейтральных атомов, ионов и молекул. На рисунке 5 показана схема энергетических уровней, характерная для газа. Самыое большое значение энергии Wi в атоме соответствует его ионизации (в атомарном газе) или энергии диссоциации молекулы (в молекулярном газе). А –; область уровней, между которыми происходят лазерные переходы. Уровни, лежащие выше серии А, обычно образуют плотную систему, которая в своей верхней части соответствует почти непрерывному спектру. Если атом попадает на один из этих верхних уровней, то он очень быстро "скатывается" по тесно расположенным уровням до верхних уровней серии А, на которых он может некоторое время "задержаться". Именно большое время жизни атома на верхних уровнях серии А, служащих верхними уровнями рабочих лазерных переходов, и позволяет создать инверсию населенностей в газе. Напротив, на нижних уровнях серии А, например W3, в большинстве газов атомы долго не задерживаются, покидают их достаточно быстро. Это дополнительно способствует достижению инверсии населенностей между верхними и нижними уровнями серии А.
Однако, существует фактор, нарушающий эту идиллию. В спектрах многих газов (в частности инертных) под нижними короткоживущими уровнями серии А (под уровнем W3) расположен метастабильный уровень W2, на котором атом может находиться сравнительно долго и населенность которого поэтому велика. Наличие долгоживущего метастабильного уровня W2 препятствует образованию инверсии населенностей, т.к. часть атомов, находящихся на уровне W2, легко переходит на уровень W3. Уровень W2 является как бы "резервуаром", питающим уровень W3 и не дающим ему опустошиться.
Что же делать?
Это осложнение можно обойти, добиваясь инверсии населенностей за счет более интенсивного заселения верхних уровней W4 и W5, а также за счет "разгрузки" уровня W2. Последнее происходит, например, при столкновении атомов, находящихся в состоянии W2, со стенками газоразрядной трубки, что приводит, в свою очередь, к уменьшению населенности уровня W3.
Рассмотрим более подробно (рис. 6) способ осуществления инверсии населенностей на примере гелий-неонового лазера.
В гелий-неоновом лазере рабочим веществом являются нейтральные атомы Ne. В электрическом разряде часть атомов Ne переходит с основного уровня W1 на долгоживущие возбужденные уровни W5 и W4. Инверсия населенностей создается большей заселенностью W5 и W4 по сравнению с короткоживущим уровнем W3. Однако в чистом неоне созданию инверсии населенностей мешает метастабильный уровень W2.
Эта трудность была преодолена введением в неон 15% примеси гелия. Энергии двух возбужденных долгоживущих уровней W2 и W3 атомов гелия почти точно совпадают с энергиями уровней W4 и W5 атомов неона. Поэтому атомы гелия вместо быстрого перехода в основное состояние за счет спонтанного излучения часто передают при столкновениях избыток своей энергии атомам неона. Небольшое различие энергий уровней (~0.05 эВ) восполняется кинетической энергией движущихся атомов. Такая передача энергии называется резонансным возбуждением. В результате такого столкновения атом гелия переходит в основное состояние W1, а атом неона –; в возбужденное метастабильное состояние W4 или W5. Таким образом, при соударении атомов гелия, возбужденных в разряде на уровни W2 и W3, с атомами неона в основном состоянии происходит дополнительное заселение уровней W4 и W5 атомов неона. Гелий в гелий-неоновом лазере служит резервуаром возбуждений, резонансным образом передаваемых от гелия к неону.
Если правильно подобрать парциальные давления гелия (~1 мм. рт.ст.) и неона (~0.1 мм. рт.ст.) в смеси, то можно добиться заселенности одного или обоих уровней W4 и W5 атомов неона, значительно превышающей населенность этих уровней в чистом неоне, и получить инверсию населенностей между уровнями W4, W5 и W3.
Интересно, что опустошение нижнего короткоживущего уровня W3 неона в гелий-неоновом лазере происходит под влиянием соударений атомов неона со стенками газоразрядной трубки. Эти соударения по-разному влияют на населенность различных уровней. Они практически не изменяют населенности уровней W4, W5 и непосредственно W3, т.к. время жизни атома на этих уровнях недостаточно велико, чтобы атомы, находящиеся в этих состояниях, могли "добраться" до стенки. Эти уровни разрушаются гораздо раньше. В то же время атомы на уровне W2 живут долго и добираются до стенок. Соударения со стенками разгружают уровень W2, в результате чего атомы неона переходят с уровня W3 на более низкий W2, т.е. уровень W3 опустошается быстрее, чем при заселенном W2.
Для того, чтобы соударения атомов неона со стенками эффективно опустошали уровень W3, необходимо подобрать оптимальный диаметр трубки лазера. Эксперимент показал, что максимальная мощность гелий-неонового лазера достигается при диаметре трубки 6 - 7 мм. При больших диаметрах трубки мощность лазера падает, несмотря на сильное увеличение объема рабочего газа. Падение мощности обусловлено тем, что эффективно опустошаются уровни для тех атомов, которые находятся вблизи стенок, а атомы, находящиеся в центре трубки, практически выключаются из процесса генерации.
В действительности, уровни W3, W4 и W5 неона представляют собой полосы из большого числа тесно расположенных уровней. В спектрометре с небольшим разрешением мы видим одну линию (1 на рис.7), тогда как на самом деле она представляет собой целый набор линий с очень близкими частотами.
Ширина спектральной линии атома Ne определяет область частот, в которой может иметь место генерация света при инверсии населенностей соответствующего перехода. Оптический резонатор, состоящий из двух плоских параллельных зеркал (резонатор Фабри-Перо), вырезает из этой относительно широкой спектральной линии гораздо более узкие линии (2, 3, 4), соответствующие собственным частотам резонатора. Если усиление в Ne достаточно велико, то генерация может возникнуть на большом числе собственных частот (мод) резонатора, для которых усиление превышает потери света в газе и зеркалах (рассеяние и поглощение). Например, при уровне потерь β1 могут генерировать три моды, при β2 –; одна центральная. Таким образом, лазер не обязательно генерирует на одной частоте, чаще наоборот, генерация происходит одновременно на нескольких типах колебаний, для которых усиление больше потерь в резонаторе. Для того чтобы лазер работал на одной частоте (в одномодовом режиме), необходимо, как правило, принимать специальные меры (например, увеличить потери, как это показано на рис. 7) или изменить расстояние между зеркалами так, чтобы усиливалась только одна мода. Так как линии генерации в основном определяются собственными частотами оптического резонатора, стабильность газового лазера будет определяться стбильностью резонатора, т.е. неподвижностью зеркал. Для регулировки положения зеркал испоьзуют явления магнитострикции стержней или пьезокерамические пластины на зеркалах.
Длина лазеров на смеси гелий-неона обычно порядка 1 –; 2 м, что позволяет получить высокую направленность лазерного луча (реально получена расходимость ~ 1-2′). Кроме очень высокой направленности, гелий-неоновый лазер обеспечивает и очень высокую стабильность частоты генерации. Несмотря на малую выходную мощность (10 –; 100 мВт), гелий-неоновый лазер –; один из самых распространенных.
Виртуальный эксперимент
Интервью академика А.М.Прохорова
Если возникли вопросы, пишите.